Autism Detection in Children: Integrating Machine Learning and Natural Language Processing in Narrative Analysis

Author:

Themistocleous Charalambos K.1ORCID,Andreou Maria2ORCID,Peristeri Eleni3ORCID

Affiliation:

1. Department of Special Needs Education, Faculty of Educational Sciences, University of Oslo, 0313 Oslo, Norway

2. Department of Speech and Language Therapy, University of Peloponnese, 24100 Kalamata, Greece

3. School of English, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Abstract

Despite the consensus that early identification leads to better outcomes for individuals with autism spectrum disorder (ASD), recent research reveals that the average age of diagnosis in the Greek population is approximately six years. However, this age of diagnosis is delayed by an additional two years for families from lower-income or minority backgrounds. These disparities result in adverse impacts on intervention outcomes, which are further burdened by the often time-consuming and labor-intensive language assessments for children with ASD. There is a crucial need for tools that increase access to early assessment and diagnosis that will be rigorous and objective. The current study leverages the capabilities of artificial intelligence to develop a reliable and practical model for distinguishing children with ASD from typically-developing peers based on their narrative and vocabulary skills. We applied natural language processing-based extraction techniques to automatically acquire language features (narrative and vocabulary skills) from storytelling in 68 children with ASD and 52 typically-developing children, and then trained machine learning models on the children’s combined narrative and expressive vocabulary data to generate behavioral targets that effectively differentiate ASD from typically-developing children. According to the findings, the model could distinguish ASD from typically-developing children, achieving an accuracy of 96%. Specifically, out of the models used, hist gradient boosting and XGBoost showed slightly superior performance compared to the decision trees and gradient boosting models, particularly regarding accuracy and F1 score. These results bode well for the deployment of machine learning technology for children with ASD, especially those with limited access to early identification services.

Funder

H.F.R.I call “Basic research Financing (Horizontal support of all Sciences)” under the National Recovery and Resilience Plan “Greece 2.0” funded by the European Union –NextGenerationEU

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3