Gait Quality Assessment in Survivors from Severe Traumatic Brain Injury: An Instrumented Approach Based on Inertial Sensors

Author:

Belluscio Valeria,Bergamini ElenaORCID,Tramontano MarcoORCID,Orejel Bustos Amaranta,Allevi Giulia,Formisano RitaORCID,Vannozzi GiuseppeORCID,Buzzi Maria GabriellaORCID

Abstract

Despite existing evidence that gait disorders are a common consequence of severe traumatic brain injury (sTBI), the literature describing gait instability in sTBI survivors is scant. Thus, the present study aims at quantifying gait patterns in sTBI through wearable inertial sensors and investigating the association of sensor-based gait quality indices with the scores of commonly administered clinical scales. Twenty healthy adults (control group, CG) and 20 people who suffered from a sTBI were recruited. The Berg balance scale, community balance and mobility scale, and dynamic gait index (DGI) were administered to sTBI participants, who were further divided into two subgroups, severe and very severe, according to their score in the DGI. Participants performed the 10 m walk, the Figure-of-8 walk, and the Fukuda stepping tests, while wearing five inertial sensors. Significant differences were found among the three groups, discriminating not only between CG and sTBI, but also for walking ability levels. Several indices displayed a significant correlation with clinical scales scores, especially in the 10 m walking and Figure-of-8 walk tests. Results show that the use of wearable sensors allows the obtainment of quantitative information about a patient’s gait disorders and discrimination between different levels of walking abilities, supporting the rehabilitative staff in designing tailored therapeutic interventions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference68 articles.

1. Head injury.

2. Epidemiology of head injury.

3. THE INCIDENCE OF ACUTE BRAIN INJURY AND SERIOUS IMPAIRMENT IN A DEFINED POPULATION

4. Actual data on epidemiological evolution and prevention endeavours regarding traumatic brain injury;Popescu;J. Med. Life,2015

5. Costs of Care after Traumatic Brain Injury

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3