Simulation Analysis of Issues with Grid Disturbance for a Photovoltaic Powered Virtual Synchronous Machine

Author:

Takamatsu TakahiroORCID,Oozeki TakashiORCID,Orihara DaiORCID,Kikusato HiroshiORCID,Hashimoto JunORCID,Otani Kenji,Matsuura Takahiro,Miyazaki Satoshi,Hamada Hiromu,Miyazaki Teru

Abstract

The increase in inverter-based resources associated with the increased installation of PV sources is a concern because it reduces the inertia of the power system during peak PV generation periods. As a countermeasure to reduce grid inertia, the addition of pseudo-inertia using virtual synchronous machines can be selected, and PV generation can cooperatively contribute to the stable operation of the power system by using the suppressed output as reserve power. However, few studies have analyzed VSMs that do not use batteries and use PV as a resource (PV-VSM) in simulations, including grid interconnection and solar radiation fluctuations, and it is necessary to clarify the issues and discuss countermeasures. In this study, electromagnetic transient response analysis was applied to a VSM connected to a two-generator system, simulations were performed, and the following findings were reported and countermeasure methods for the problem were proposed. When the PV capacity is insufficient for the output required by the VSM inverter, the PV-VSM control system may become unstable. This is caused by a drop in the capacitor voltage of the DC/DC converter due to insufficient PV output. The limiter control system is designed to address this problem by combining the headroom estimation system with the current limiting algorithm. The proposed limiter control system is validated on solar radiation ramp fluctuations as a test case and found that the system was effective in supressing PV-VSM instability. In our simulation case, the PV-VSM with our limiter control can continue to operate stably even if the PV available power is 0.03 [p.u.] short of the inverter’s reference power by the solar power ramp fluctuation, as long as the inverter installation rate is less than 50%.

Funder

New Energy and Industrial Technology Development Organization

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference55 articles.

1. IPCC: 2018 Global Warming of 1.5 °C An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Povertyhttps://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf

2. UNFCCC Authors, Glasgow Climate Change Conference—OctoberNovember 2021 Decisions. 13 November 2021https://unfccc.int/sites/default/files/resource/cop26_auv_2f_cover_decision.pdf

3. Net Zero by 2050,2021

4. Outline of the Basic Energy Plan,2020

5. FY2020 Energy Supply and Demand Results (Preliminary [Announced on 26 November 2021]),2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3