Funding of the Energy Transition by Monetary Sovereign Countries

Author:

Diesendorf MarkORCID,Hail StevenORCID

Abstract

If global energy consumption returns to its pre-pandemic growth rate, it will be almost impossible to transition to a zero-emission or net-zero-emission energy system by 2050 in the absence of large-scale CO2 removal. Since relying on unproven technologies for CO2 removal is speculative and risky, this paper considers an energy descent scenario for reaching zero greenhouse gas emissions from energy by 2050. To drive the rapid transition from fossil fuels to carbon-free energy sources and ensure demand reduction, funding is needed urgently in order to implement four strategies: (i) technology change, i.e., implementing the growth of zero-carbon energy production, end-use energy efficiency and ‘green’ energy carriers, together with ongoing R&D on CO2 removal; (ii) reducing climate impacts; (iii) reducing energy consumption by social and behavioural changes; and (iv) improving human wellbeing while increasing social justice. Modern monetary theory explains how monetary sovereign governments, with their own fiat currencies, can create the necessary funding without financial constraints, although constraints do result from the productive capacities of their economies. The energy transition could be part-funded by a significant transfer of resources from monetary sovereign countries of the global North to the global South, financed by currency issuance.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference54 articles.

1. 4 Charts Explain Greenhouse Gas Emissions by Countries and Sectors. World Resources Institute https://www.wri.org/blog/2020/02/greenhouse-gas-emissions-by-country-sector/

2. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes;Jacobson;Proc. Natl. Acad. Sci. USA,2015

3. Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes

4. Special Report: Summary for Policymakers. Global Warming of 1.5 °C,2018

5. Radical transformation pathway towards sustainable electricity via evolutionary steps

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3