Battery Energy Storage for Photovoltaic Application in South Africa: A Review

Author:

Thango Bonginkosi A.ORCID,Bokoro Pitshou N.ORCID

Abstract

Despite the significant slowdown of economic activity in South Africa by virtue of the COVID-19 outbreak, load shedding or scheduled power outages remained at a high level. The trend of rising load-shedding hours has persisted throughout most of the year 2022. Operational issues within the South African power utility inflamed the unpredictable nature of generation capacity, resulting in unscheduled outages at several generating units, mostly due to multiple breakdowns. To forestall substantial spikes in energy costs, an increasing number of enterprises and homeowners have started to gradually adopt renewable energy technologies to sustain their operational demand. Therefore, there is an increase in the exploration and investment of battery energy storage systems (BESS) to exploit South Africa’s high solar photovoltaic (PV) energy and help alleviate production losses related to load-shedding-induced downtime. As a result, the current work presents a comprehensive and consequential review conducted on the BESS specifically for solar PV application and in the South African context. The research investigations carried out on BESS for PV application are crucially examined, drawing attention to their capacities, shortcomings, constraints, and prospects for advancement. This investigation probed several areas of interest where the BESS-PV scheme is adopted, viz., choice of battery technology, mitigating miscellaneous power quality problems, optimal power system control, peak load shaving, South African BESS market and status of some Real BESS-PV projects. The techno-economic case scenario has been proposed in the current research and results yield that lithium-ion batteries are more viable than Lead–acid batteries.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3