A Log-Logistic Predictor for Power Generation in Photovoltaic Systems

Author:

Souza Guilherme,Santos RicardoORCID,Saraiva ErlandsonORCID

Abstract

Photovoltaic (PV) systems are dependent on solar irradiation and environmental temperature to achieve their best performance. One of the challenges in the photovoltaic industry is performing maintenance as soon as a system is not working at its full generation capacity. The lack of a proper maintenance schedule affects power generation performance and can also decrease the lifetime of photovoltaic modules. Regarding the impact of environmental variables on the performance of PV systems, research has shown that soiling is the third most common reason for power loss in photovoltaic power plants, after solar irradiance and environmental temperature. This paper proposes a new statistical predictor for forecasting PV power generation by measuring environmental variables and the estimated mass particles (soiling) on the PV system. Our proposal was based on the fit of a nonlinear mixed-effects model, according to a log-logistic function. Two advantages of this approach are that it assumes a nonlinear relationship between the generated power and the environmental conditions (solar irradiance and the presence of suspended particulates) and that random errors may be correlated since the power generation measurements are recorded longitudinally. We evaluated the model using a dataset comprising environmental variables and power samples that were collected from October 2019 to April 2020 in a PV power plant in mid-west Brazil. The fitted model presented a maximum mean squared error (MSE) of 0.0032 and a linear coefficient correlation between the predicted and observed values of 0.9997. The estimated average daily loss due to soiling was 1.4%.

Funder

National Council for Scientific and Technological Development

Research Program of the Electrical Energy National Agency

Federal University of Mato Grosso do Sul

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference28 articles.

1. Characterization of photovoltaic panels: The effects of dust;Catelani;Proceedings of the IEEE International Energy Conference and Exhibition,2012

2. Assessing the potential of concentrating solar photovoltaic generation in Brazil with satellite-derived direct normal irradiation

3. Webinar Series—Wind and Solar PV—What We Need by 2050 https://bit.ly/3LJJ63r

4. A Statistical Methodology to Estimate Soiling Losses on Photovoltaic Solar Plants

5. Análise da Influência do Acúmulo de Sujeira Sobre Diferentes Tecnologias de módulos FV: Revisão e medições de campo;Hickel;Proceedings of the VI Congresso Brasileiro de Energia Solar,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3