Effect of Working Fluid-Filling Ratio Combination on Thermosyphon Performance as Add-In Enhancer for Indoor Air Conditioning Devices

Author:

Carvajal-Mariscal IgnacioORCID,De León-Ruiz Jorge E.,Vázquez-Arenas Jorge,Venegas MaríaORCID

Abstract

An experimental study is presented to account for the implementation of a two-phase closed thermosyphon pipe, for energy-saving purposes, in air conditioning systems in the context of COVID-19. The experimental setup consisted of a 0.5 m × 0.0127 m type L copper pipe which was employed as the body of the heat exchanger; an electric resistance heater of 0.1 m length located at the bottom; and a 0.25 m length water-cooled concentric condenser located at the top. The evaluation was conducted employing acetone, ethanol, and distilled water as working fluids; ranging the heat supplied at the evaporator from 25 to 125 W and the filling ratio from 20% to 40% of the total inner volume of the thermosyphon. From the data obtained, it was found that ethanol is the working fluid most susceptible to changes in operation conditions. Contrarily, distilled water was found to deliver consistent performance, up to a point that, for the analysed setup, it is considered to be independent of both, heat flow supplied at the evaporator and thermosyphon filling ratio. Meanwhile, acetone was found to be the only fluid tested that displays a directly proportional behaviour between heat absorption and dissipation. From compiling experimental data, response surfaces were constructed and used as direct and rough optimization tools. The information provided by this approach is considered to be particularly useful and is introduced for modelling and design purposes. Based on the results, it was found that acetone, within operation ranges of 34%<ϕ<40% and 75 W<Q˙Evap<125 W, was the most suitable working fluid to use in a two-phase closed thermosyphon for energy-saving purposes in air conditioning applications.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference31 articles.

1. REHVA COVID-19 GUIDANCE Version 4.1, “How to Operate HVAC and Other Building Service Systems to Prevent the Spread of the Coronavirus (SARS-CoV-2) Disease (COVID-19) in Workplaces”, Federation of European Heating, Ventilation and Air Conditioning Associations, 15 April 2021 https://www.rehva.eu/fileadmin/user_upload/REHVA_COVID-19_guidance_document_V4.1_15042021.pdf

2. Renewables 2019: Analysis and Forecast to 2024,2019

3. Experimental evaluation of a thermosyphon-based waste-heat recovery and reintegration device: A case study on low-temperature process heat from a microbrewery plant

4. An Introduction to Heat Pipes: Modeling, Testing and Applications, (Thermal Management of Microelectronic and Electronic System Series);Peterson,1994

5. Application of heat pipe heat exchanger in heating, ventilation and aire conditioning (HVAC) systems;Firouzfar;Sci. Res. Essays,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3