Abstract
Three novel pyrazine-based organic photosensitizers denoted as TPP, TPPS, and TPPF were synthesized for dye-sensitized solar cell (DSSC) studies. Chemical structures of the pyrazine-based photosensitizers were designed with pyrazine derivatives as acceptors, triphenylamine groups as donors, and the thiophene–cyanoacryl group as an auxiliary heterocyclic linkers-acceptor. Using UV-vis spectrophotometry, cyclic voltammetry, and density functional theory calculations, optical and electrochemical characteristics of these pyrazine-based photosensitizers were examined and explored in relation to photovoltaic parameters. The effects of the molecular structures of these photosensitizers on the performances of DSSCs were also investigated. The overall conversion efficiencies of DSSCs based on pyrazine-based photosensitizers were 1.31~2.64% under AM 1.5 irradiation of 100 mW/cm2. To confirm the effect of interfacial charge transfer on photovoltaic performances of DSSC based on pyrazine-based photosensitizers, interfacial charge transfer resistances were investigated by electrical impedance spectroscopy (EIS) measurements.
Funder
National Research Foundation of Korea
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献