A Hash-Based RFID Authentication Mechanism for Context-Aware Management in IoT-Based Multimedia Systems

Author:

B D DeebakORCID,Al-Turjman FadiORCID,Mostarda LeonardoORCID

Abstract

With the technological advances in the areas of Machine-To-Machine (M2M) and Device-To-Device (D2D) communication, various smart computing devices now integrate a set of multimedia sensors such as accelerometers, barometers, cameras, fingerprint sensors, gestures, iris scanners, etc., to infer the environmental status. These devices are generally identified using radio-frequency identification (RFID) to transfer the collected data to other local or remote objects over a geographical location. To enable automatic data collection and transition, a valid RFID embedded object is highly recommended. It is used to authorize the devices at various communication phases. In smart application devices, RFID-based authentication is enabled to provide short-range operation. On the other hand, it does not require the communication device to be in line-of-sight to gain server access like bar-code systems. However, in existing authentication schemes, an adversary may capture private user data to create a forgery problem. Also, another issue is the high computation cost. Thus, several studies have addressed the usage of context-aware authentication schemes for multimedia device management systems. The security objective is to determine the user authenticity in order to withhold the eavesdropping and tracing. Lately, RFID has played a significant for the context-aware sensor management systems (CASMS) as it can reduce the complexity of the sensor systems, it can be available in access control, sensor monitoring, real time inventory and security-aware management systems. Lately, this technology has opened up its wings for CASMS, where the challenging issues are tag-anonymity, mutual authentication and untraceability. Thus, this paper proposes a secure hash-based RFID mechanism for CASMS. This proposed protocol is based on the hash operation with the synchronized secret session-key to withstand any attacks, such as desynchronization, replay and man-in-the-middle. Importantly, the security and performance analysis proves that the proposed hash-based protocol achieves better security and performance efficiencies than other related schemes. From the simulation results, it is observed that the proposed scheme is secure, robust and less expensive while achieving better communication metrics such as packet delivery ratio, end-to-end delay and throughput rate.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference68 articles.

1. Smart parking in IoT-enabled cities: A survey

2. Scheduling RFID networks in the IoT and smart health era

3. Smartphone Usage Global Statshttps://www.emarketer.com/Article/Mobile-PhoneSmartphone-Usage-Varies-Globally/1014738

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3