Critical Issues of Double-Metal Layer Coating on FBG for Applications at High Temperatures

Author:

Lupi CarlaORCID,Felli FerdinandoORCID,Dell’Era AlessandroORCID,Ciro ErwinORCID,Caponero MicheleORCID,Kalinowski HypolitoORCID,Vendittozzi CristianORCID

Abstract

Use of fiber Bragg gratings (FBGs) to monitor high temperature (HT) applications is of great interest to the research community. Standard commercial FBGs can operate up to 600 ∘ C. For applications beyond that value, specific processing of the FBGs must be adopted to allow the grating not to deteriorate. The most common technique used to process FBGs for HT applications is the regeneration procedure (RP), which typically extends their use up to 1000 ∘ C. RP involves a long-term annealing of the FBGs, to be done at a temperature ranging from 550 to 950 ∘ C. As at that temperature, the original coating of the FBGs would burn out, they shall stay uncoated, and their brittleness is a serious concern to deal with. Depositing a metal coating on the FBGs prior to process them for RP offers an effective solution to provide them with the necessary mechanical strengthening. In this paper, a procedure to provide the FBG with a bimetallic coating made by copper and nickel electrodeposition (ED) is proposed, discussing issues related to the coating morphology, adherence to the fiber, and effects on the grating spectral response. To define the processing parameters of the proposed procedure, production tests were performed on dummy samples which were used for destructive SEM–EDS analysis. As a critical step, the proposed procedure was shown to necessitate a heat treatment after the nickel ED, to remove the absorbed hydrogen. The spectral response of the FBG samples was monitored along the various steps of the proposed procedure and, as a final proof test for adherence stability of the bimetallic coating, along a heating/cooling cycle from room temperature to 1010 ∘ C. The results suggest that, given the emergence of Kirkendall voids at the copper–nickel interface, occurring at the highest temperatures (700–1010 ∘ C), the bimetallic layer could be employed as FBG coating up to 700 ∘ C.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3