Characterization of Bioactive Colored Materials Produced from Bacterial Cellulose and Bacterial Pigments

Author:

Amorim Lúcia F. A.ORCID,Fangueiro RaulORCID,Gouveia Isabel C.ORCID

Abstract

A Bacterial Cellulose (BC) film was developed and characterized as a potential functional bioactive material. BC films, obtained from a microbial consortium of bacteria and yeast species, were functionalized with the bacterial pigment prodigiosin, produced by Serratia plymuthica, and flexirubin-type pigment, from Chryseobacterium shigense, which exhibit a wide range of biological properties. BC was successfully functionalized at 15% over the weight of the fiber at 40 °C during 60 min, and a color strength of 1.00 ± 0.01 was obtained for BC_prodigiosin and 0.38 ± 0.02 for BC_flexirubin-type pigment. Moreover, the BC films showed moderate hydrophilic character following alkaline treatment, which was maintained after both pigments were incorporated. The porosity and mechanical performance of the functionalized BC samples also remained unaffected. Furthermore, the BC samples functionalized with prodigiosin presented antibacterial activity and were able to inhibit the growth of pathogenic bacteria Staphylococcus aureus and Pseudomonas aeruginosa, with inhibition rates of 97.89 ± 0.60% and 85.12 ± 0.17%, respectively, while BC samples functionalized with flexirubin-type pigment exhibited the highest antioxidant activity, at 38.96 ± 0.49%. This research provides an eco-friendly approach to grant BC film-based material with color and advantageous bioactive properties, which can find application in several fields, especially for medical purposes.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

General Materials Science

Reference88 articles.

1. Microbial Cellulose: Production and Application;Mona,2019

2. Production and Characteristics of Cellulose from Different Sources;Heinze,2018

3. Bacterial Cellulose as a Raw Material for Food and Food Packaging Applications

4. Bacterial cellulose: A smart biomaterial with diverse applications

5. The optimization of bacterial cellulose production and its applications: a review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3