Enhanced Corrosion Resistance of Layered Double Hydroxide Films on Mg Alloy: The Key Role of Cationic Surfactant

Author:

Yang Qiuxiang,Tabish MohammadORCID,Wang Jingbao,Zhao Jingmao

Abstract

In this study, dense anticorrosion magnesium–aluminum layered double hydroxide (MgAl-LDH) films were prepared for the first time by introducing a cationic surfactant tetradecyltrimethyl ammonium bromide (TTAB) in the process of in situ hydrothermal synthesis of Mg-Al LDH films on an AZ31 magnesium alloy. Results of XRD, FTIR, and SEM confirmed that TTAB forms the MgAl-LDH-TTAB, although TTAB cannot enter into LDH layers, and MgAl-LDH-TTAB powders are much smaller and more homogenous than MgAl-CO32−-LDH powders. Results of SEM, EDS, mapping, and XPS confirmed that TTAB forms the MgAl-LDH-TTAB films and endows LDH films with denser structure, which provides films with better shielding efficiency. Results of potentiodynamic polarization curves (PDP) and electrochemical impedance spectroscopy (EIS) confirmed that MgAl-LDH-TTABx g films have better corrosion resistance than an MgAl-CO32−-LDH film. The corrosion current density (icorr) of the MgAl-LDH-TTAB0.35 g film in 3.5 wt.% NaCl solution was reduced to 1.09 × 10−8 A.cm−2 and the |Z|f = 0.05 Hz value was increased to 4.48 × 105 Ω·cm2. Moreover, the increasing concentration of TTAB in MgAl-LDH-TTABx g (x = 0.025, 0.05, 0.1, 0.2 and 0.35) provided denser outer layer LDH films and thereby increased the corrosion resistance of the AZ31 Mg alloy. Additionally, the |Z|f = 0.05 Hz values of the MgAl-LDH-TTAB0.35 g film still remained at 105 Ω·cm2 after being immersed in 3.5 wt.% NaCl solution for 168 h, implying the good long-term corrosion resistance of MgAl-LDH-TTABx g films. Therefore, introducing cationic surfactant in the process of in situ hydrothermal synthesis can be seen as a novel approach to creating efficient anticorrosion LDH films for Mg alloys.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3