Abstract
The existence of chloride ions, sulfate ions, and vehicle dynamic loads may lead to a shortened service life and premature failure of the road and bridge structures in northwestern China. Immersed in a dual-salt solution while simultaneously applying cyclic flexural loads, the free chloride ion concentration and erosion depth in concrete specimens were measured. The influence of the sulfate concentration on the apparent surface chloride concentration (Cs) and apparent diffusion coefficient (Dapp) was studied. An exponential model was used to fit the Cs, and the influence of sulfate concentration on the Cs was analyzed. The result showed that cyclic loading and solution concentration were two primary factors affecting chloride diffusion. Meanwhile, compared with the emersion conditions, dynamic loading would induce significantly accelerated chloride ion penetration. Under the coupling effect of sulfate and dynamic loading, as the sulfate concentration increased, the chloride ion concentration and erosion depth were both decreased. The existence of sulfate ions improved the chloride ion penetration resistance of concrete. The results provide insight in designing concrete in regions where multiple salt ingression (sulfate and chloride) is a major durability issue of the structures.
Funder
Fujian Provincial Department of Science and Technology, China
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献