Physical Characterization and In Vitro Toxicity Test of PDMS Synthesized from Low-Grade D4 Monomer as a Vitreous Substitute in the Human Eyes

Author:

Auliya Diba Grace,Setiadji Soni,Fitrilawati Fitrilawati,Risdiana RisdianaORCID

Abstract

Polydimethylsiloxane (PDMS) is one of the most superior materials and has been used as a substitute for vitreous humor in the human eye. In previous research, we have succeeded in producing PDMS with low and medium viscosity using octamethylcyclotetrasiloxane (D4) monomer with a low grade of 96%. Both have good physical properties and are comparable to commercial product PDMS and PDMS synthesized using D4 monomer with a high grade of 98%. An improvement of the synthesis process is needed to ensure that PDMS synthesized from a low-grade D4 monomer under specific synthesis conditions can repeatedly produce high-quality PDMS. Apart from good physical properties, the PDMS as a substitute for vitreous humor must also be safe and not cause other disturbances to the eyes. Here, we reported the process of synthesizing and characterizing the physical properties of low- and medium-viscosity PDMS using a low-grade D4 monomer. We also reported for the first time the in vitro toxicity test using the Hen’s Egg Test Chorioallantoic Membrane (HET-CAM) test method. We have succeeded in obtaining PDMS with viscosities of 1.15 Pa.s, 1.17 Pa.s, and 1.81 Pa.s. All samples have good physical properties such as refractive index, surface tension, and functional groups that are similar to commercial PDMS. The HET-CAM test results showed that all samples did not show signs of irritation indicating that samples were non-toxic. From the results of this study, it can be concluded that PDMS synthesized from a low-grade D4 monomer under specific synthesis conditions by the ROP method is very safe and has the potential to be developed as a substitute for vitreous humor in human eyes.

Funder

Padjadjaran University

Ministry of Research, Technology and Higher Education

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3