Abstract
Bone tissue engineering strategies attempt to regenerate bone tissue lost due to injury or disease. Three-dimensional (3D) scaffolds maintain structural integrity and provide support, while improving tissue regeneration through amplified cellular responses between implanted materials and native tissues. Through this, scaffolds that show great osteoinductive abilities as well as desirable mechanical properties have been studied. Recently, scaffolding for engineered bone-like tissues have evolved with the use of conductive materials for increased scaffold bioactivity. These materials make use of several characteristics that have been shown to be useful in tissue engineering applications and combine them in the hope of improved cellular responses through stimulation (i.e., mechanical or electrical). With the addition of conductive materials, these bioactive synthetic bone substitutes could result in improved regeneration outcomes by reducing current factors limiting the effectiveness of existing scaffolding materials. This review seeks to overview the challenges associated with the current state of bone tissue engineering, the need to produce new grafting substitutes, and the promising future that conductive materials present towards alleviating the issues associated with bone repair and regeneration.
Funder
Musculoskeletal Transplant Foundation
Subject
Biomedical Engineering,Biomaterials
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献