Abstract
Nanostructured metallic materials can be obtained by two major processing strategies: a bottom-up approach that starts with powdered metals to be mechanically and chemically compacted via different compaction methodologies, and a top-down approach that starts with bulk conventional metallic materials that are induced to a sometimes-extraordinary grain size reduction via different severe plastic deformation (SPD) methods. In the present study, a dual strategy was followed to obtain a sound and stable nanostructured commercially pure cobalt. Powdered cobalt of 2 μm was compacted by ball-milling (BM) followed by spark-plasma sintering (SPS) to obtain a bulk metallic material whose relative mass density reached a value of 95.8%. This process constituted a bottom-up strategy to obtain ultrafine submicrometer-grained bulk cobalt, and a top-down strategy of subjecting the BM + SPS submicrometer-grained cobalt to a specific SPD technique, namely equal-channel angular pressing (ECAP). The latter was carried out in one to four passes following so-called route BC, reaching 98.4% density and a nanometric-grained microstructure. The material was microstructurally and mechanically characterized by TEM (transmission electron microscope) and nanoindentation. The obtained results are a representative solid example for obtaining nanostructured metallic materials using both grain-refining strategies, bottom-up and top-down.
Subject
General Materials Science,Metals and Alloys
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献