Anisotropy of the Microstructure and Tensile Properties in Ti-5Al-5Mo-5V-1Cr-1Fe near β Titanium Alloy during Hot Rolling and Heat Treatment

Author:

Zhang Xiaoyong,Mei Yaping,Lv Yaping,Chen ChaoORCID,Zhou Kechao

Abstract

Ti-55511 billet with the acicular α initial microstructure was hot rolled (HR sample) and then heat treated (HR+HT sample) at 750 °C. The effects of HR and HT on the anisotropy of microstructure, texture, and tensile properties were investigated. The tensile results show that there are obvious anisotropic tensile properties between RD and TD. The anisotropic elongation of HR sample is related to the morphology of α phase. After HR, the acicular α is parallel to RD. As for RD specimen, the transgranular propagation of microcrack passing through the acicular α phase leads to the ductile fracture, thus showing the higher ductility than TD specimen. While the intergranular propagation of microcrack passing by the equiaxed α phase in TD specimen causes the brittle fracture. The anisotropic strength of HR sample depends on the relationship among texture type of α phase, slip system, and loading direction. The maximum texture intensity at TD leads to the easy activation of basal slip system in RD and that of prismatic slip system in TD, and then causes the lower strength of RD specimen than TD specimen. After HT, the decreased anisotropy of elongation and strength can be attributed to the increased α size and the decreased texture intensity of α phase. These results demonstrate that anisotropic tensile properties mainly depend on the morphology and texture of α phase.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3