Improving Perceived Quality of Live Adaptative Video Streaming

Author:

Santos Carlos Eduardo MaffiniORCID,da Silva Carlos Alexandre GouveaORCID,Pedroso Carlos MarceloORCID

Abstract

Quality of service (QoS) requirements for live streaming are most required for video-on-demand (VoD), where they are more sensitive to variations in delay, jitter, and packet loss. Dynamic Adaptive Streaming over HTTP (DASH) is the most popular technology for live streaming and VoD, where it has been massively deployed on the Internet. DASH is an over-the-top application using unmanaged networks to distribute content with the best possible quality. Widely, it uses large reception buffers in order to keep a seamless playback for VoD applications. However, the use of large buffers in live streaming services is not allowed because of the induced delay. Hence, network congestion caused by insufficient queues could decrease the user-perceived video quality. Active Queue Management (AQM) arises as an alternative to control the congestion in a router’s queue, pressing the TCP traffic sources to reduce their transmission rate when it detects incipient congestion. As a consequence, the DASH client tends to decrease the quality of the streamed video. In this article, we evaluate the performance of recent AQM strategies for real-time adaptive video streaming and propose a new AQM algorithm using Long Short-Term Memory (LSTM) neural networks to improve the user-perceived video quality. The LSTM forecast the trend of queue delay to allow earlier packet discard in order to avoid the network congestion. The results show that the proposed method outperforms the competing AQM algorithms, mainly in scenarios where there are congested networks.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference64 articles.

1. The Global Internet Phenomena Report COVID-19 Spotlight https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/2020/Phenomena/COVID%20Internet%20Phenomena%20Report%2020200507.pdf

2. Cisco Visual Networking Index: Forecast and Methodology 2015 to 2020 http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html

3. A Survey of VBR Video Traffic Models

4. Overview of H.264/MPEG-4 part 10

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3