A Novel Deep Learning Method for Predicting RNA-Protein Binding Sites

Author:

Zhao Xueru1,Chang Furong2,Lv Hehe1,Zou Guobing1,Zhang Bofeng34

Affiliation:

1. School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China

2. School of Information Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, China

3. School of Computer and Communication Engineering, Shanghai Polytechnic University, Shanghai 201209, China

4. School of Computer Science and Technology, Kashi University, Kashi 844008, China

Abstract

The cell cycle and biological processes rely on RNA and RNA-binding protein (RBP) interactions. It is crucial to identify the binding sites on RNA. Various deep-learning methods have been used for RNA-binding site prediction. However, they cannot extract the hierarchical features of the RNA secondary structure. Therefore, this paper proposes HPNet, which can automatically identify RNA-binding sites and -binding preferences. HPNet performs feature learning from the two perspectives of the RNA sequence and the RNA secondary structure. A convolutional neural network (CNN), a deep-learning method, is used to learn RNA sequence features in HPNet. To capture the hierarchical information for RNA, we introduced DiffPool into HPNet, a differentiable pooling graph neural network (GNN). A CNN and DiffPool were combined to improve the binding site prediction accuracy by leveraging both RNA sequence features and hierarchical features of the RNA secondary structure. Binding preferences can be extracted based on model outputs and parameters. Overall, the experimental results showed that HPNet achieved a mean area under the curve (AUC) of 94.5% for the benchmark dataset, which was more accurate than the state-of-the-art methods. Moreover, these results demonstrate that the hierarchical features of RNA secondary structure play an essential role in selecting RNA-binding sites.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3