Explainable Artificial Intelligence Enabled Intrusion Detection Technique for Secure Cyber-Physical Systems

Author:

Almuqren Latifah1,Maashi Mashael S.2,Alamgeer Mohammad3,Mohsen Heba4ORCID,Hamza Manar Ahmed5,Abdelmageed Amgad Atta5ORCID

Affiliation:

1. Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

2. Department of Software Engineering, College of Computer and Information Sciences, King Saud University, P.O. Box 103786, Riyadh 11543, Saudi Arabia

3. Department of Information Systems, College of Science & Art at Mahayil, King Khalid University, Abha 62529, Saudi Arabia

4. Department of Computer Science, Faculty of Computers and Information Technology, Future University in Egypt, New Cairo 11835, Egypt

5. Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia

Abstract

A cyber-physical system (CPS) can be referred to as a network of cyber and physical components that communicate with each other in a feedback manner. A CPS is essential for daily activities and approves critical infrastructure as it provides the base for innovative smart devices. The recent advances in the field of explainable artificial intelligence have contributed to the development of robust intrusion detection modes for CPS environments. This study develops an Explainable Artificial Intelligence Enabled Intrusion Detection Technique for Secure Cyber-Physical Systems (XAIID-SCPS). The proposed XAIID-SCPS technique mainly concentrates on the detection and classification of intrusions in the CPS platform. In the XAIID-SCPS technique, a Hybrid Enhanced Glowworm Swarm Optimization (HEGSO) algorithm is applied for feature selection purposes. For intrusion detection, the Improved Elman Neural Network (IENN) model was utilized with an Enhanced Fruitfly Optimization (EFFO) algorithm for parameter optimization. Moreover, the XAIID-SCPS technique integrates the XAI approach LIME for better understanding and explainability of the black-box method for accurate classification of intrusions. The simulation values demonstrate the promising performance of the XAIID-SCPS technique over other approaches with maximum accuracy of 98.87%.

Funder

Scientific Research at King Khalid University

Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

King Saud University, Riyadh, Saudi Arabia

Prince Sattam bin Abdulaziz University project number

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3