Swin Transformer-Based Object Detection Model Using Explainable Meta-Learning Mining

Author:

Baek Ji-Won1ORCID,Chung Kyungyong2ORCID

Affiliation:

1. Department of Computer Science, Kyonggi University, Suwon 16227, Republic of Korea

2. Division of AI Computer Science and Engineering, Kyonggi University, Suwon 16227, Republic of Korea

Abstract

In order to minimize damage in the event of a fire, the ignition point must be detected and dealt with before the fire spreads. However, the method of detecting fire by heat or fire is more damaging because it can be detected after the fire has spread. Therefore, this study proposes a Swin Transformer-based object detection model using explainable meta-learning mining. The proposed method merges the Swin Transformer and YOLOv3 model and applies meta-learning so as to build an explainable object detection model. In order for efficient learning with small data in the course of learning, it applies Few-Shot Learning. To find the causes of the object detection results, Grad-CAM as an explainable visualization method is used. It detects small objects of smoke in the fire image data and classifies them according to the color of the smoke generated when a fire breaks out. Accordingly, it is possible to predict and classify the risk of fire occurrence to minimize damage caused by fire. In this study, with the use of Mean Average Precision (mAP), performance evaluation is carried out in two ways. First, the performance of the proposed object detection model is evaluated. Secondly, the performance of the proposed method is compared with a conventional object detection method’s performance. In addition, the accuracy comparison using the confusion matrix and the suitability of real-time object detection using FPS are judged. Given the results of the evaluation, the proposed method supports accurate and real-time monitoring and analysis.

Funder

Kyonggi University Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3