Temperature Variation of Rock during Deformation and Fracturing: Particle Flow Modeling Method and Mechanism Analyses

Author:

Jiao Xiaojie1,Cheng Cheng1,Song Yubing2,Wang Gang1,He Linjuan1

Affiliation:

1. School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China

2. School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China

Abstract

The rock deformation and failure characteristics and mechanisms are very important for stability evaluation and hazard control in rock engineering. The process of rock deformation and failure is often accompanied by temperature changes. It is of great significance to study the characteristics and mechanism of temperature variation in rock under deformation and fracturing for a better understanding of rock failure and to obtain some probable precursor information for guiding the prediction of the mechanical behavior of rock. However, most of the studies are based on observations in the field and laboratory tests, while it is still required to develop an effective method for modeling and calculating the temperature variation of rock during the deformation and failure processes. In this paper, a particle flow modeling method based on energy analyses is proposed for simulating the temperature variation of rocks, considering four temperature effects, including the thermoelastic effect, friction effect, damping effect, and heat conduction effect. The four effects are analyzed, and the theoretical equations have been provided. On this basis, the numerical model is built and calibrated according to the laboratory uniaxial compressive experiment on a marble specimen, and a comparison study has been conducted between the laboratory and numerical experiment results. It is found that the numerical model can well simulate the average value and distribution of the temperature variation of rock specimens, so this method can be applied for studying the mechanism of temperature variation more comprehensively during the whole process of rock deformation and fracturing compared with the continuous modeling methods. With this method, it is shown that the temperature change has three different stages with different characteristics during the uniaxial compression experiments. In the different stages, the different effects play different roles in temperature variation, and stress distribution and crack propagation have obvious influences on the local distribution of temperature. Further investigations have also been conducted in a series of sensitive analyses on the influences of four factors, including the thermal conductivity, friction coefficient, thermal expansion coefficient, and particle size ratio. The results show that they have different influences on the thermal and mechanical behaviors of the rock specimens during the deformation and failure process, while the thermal expansion coefficient and the particle size ratio have more significant impacts than the other two factors. These findings increase our knowledge on the characteristics and mechanism of temperature variation in rock during the deformation and fracturing process, and the proposed modeling method can be used in more studies for deformation and fracturing analyses in rock experiments and engineering.

Funder

Project for compilation and revision of highway engineering industry standards, Ministry of Transport of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference55 articles.

1. Vipulanandan, C., and Mohammed, A. (2015). Hydraulic Fracturing Fluid Modified with Nanosilica Proppant and Salt Water for Shale Rocks, American Association of Drilling Engineers.

2. Vipulanandan, C., Mohammed, A., and Mahmood, W. (2021). Characterizing Rock Properties and Verifying Failure Parameters Using Data Analytics with Vipulanandan Failure and Correlation Models, American Rock Mechanics Association.

3. Li, Y., Hishamuddin, F.N.S., Mohammed, A.S., Armaghani, D.J., Ulrikh, D.V., Dehghanbanadaki, A., and Azizi, A. (2021). The Effects of Rock Index Tests on Prediction of Tensile Strength of Granitic Samples: A Neuro-Fuzzy Intelligent System. Sustainability, 13.

4. Intelligent prediction of rock mass deformation modulus through three optimized cascaded forward neural network models;Hasanipanah;Earth Sci. Inform.,2022

5. Statistical Damage Shear Constitutive Model of Rock Joints Under Seepage Pressure;Xie;Front. Earth Sci.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3