Person Identification and Gender Classification Based on Vision Transformers for Periocular Images

Author:

Suravarapu Vasu Krishna1,Patil Hemprasad Yashwant1ORCID

Affiliation:

1. School of Electronics Engineering, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India

Abstract

Many biometrics advancements have been widely used for security applications. This field’s evolution began with fingerprints and continued with periocular imaging, which has gained popularity due to the pandemic scenario. CNN (convolutional neural networks) has revolutionized the computer vision domain by demonstrating various state-of-the-art results (performance metrics) with the help of deep-learning-based architectures. The latest transformation has happened with the invention of transformers, which are used in NLP (natural language processing) and are presently being adapted for computer vision. In this work, we have implemented five different ViT- (vision transformer) based architectures for person identification and gender classification. The experiment was performed on the ViT architectures and their modified counterparts. In general, the samples selected for train:val:test splits are random, and the trained model may get affected by overfitting. To overcome this, we have performed 5-fold cross-validation-based analysis. The experiment’s performance matrix indicates that the proposed method achieved better results for gender classification as well as person identification. We also experimented with train-val-test partitions for benchmarking with existing architectures and observed significant improvements. We utilized the publicly available UBIPr dataset for performing this experimentation.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3