Variable Selection Using Deep Variational Information Bottleneck with Drop-Out-One Loss

Author:

Pan Junlong1,Li Weifu12ORCID,Liu Liyuan1ORCID,Jia Kang3,Liu Tong3,Chen Fen45

Affiliation:

1. College of Science, Huazhong Agricultural University, Wuhan 430070, China

2. Engineering Research Center of Intelligent Technology for Agriculture, Ministry of Education, Wuhan 430070, China

3. Beijing Jiyun Intelligent Technology Co., Ltd., Beijing 100096, China

4. School of Finance, Hubei University of Economics, Wuhan 430205, China

5. Hubei Financial Development and Financial Security Research Center, Hubei University of Economics, Wuhan 430205, China

Abstract

The information bottleneck (IB) model aims to find the optimal representations of input variables with respect to the response variable. While it has been widely used in the machine-learning community, research from the perspective of the information-theoretic method has been rarely reported regarding variable selection. In this paper, we investigate DNNs for variable selection through an information-theoretic lens. To be specific, we first state the rationality of variable selection with IB and then propose a new statistic to measure the variable importance. On this basis, a new algorithm based on a deep variational information bottleneck is developed to calculate the statistic, in which we consider the Gaussian distribution and the exponential distribution to estimate the Kullback–Leibler divergence. Empirical evaluations on simulated and real-world data show that the proposed method performs better than classical variable-selection methods. This confirms the feasibility of the variable selection from the perspective of IB.

Funder

Fundamental Research Funds for the Central Universities of China

Knowledge Innovation Program of Wuhan-Shuguang Project

Doctoral Scientific Research Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference35 articles.

1. Regression shrinkage and selection via the lasso;Tibshirani;J. Roy. Statist. Soc. B Methodol.,1996

2. Model selection and estimation in regression with grouped variables;Yuan;J. Roy. Statist. Soc. B Methodol.,2006

3. Variable selection via nonconcave penalized likelihood and its oracle properties;Fan;J. Am. Stat. Assoc.,2001

4. Sparse additive models;Ravikumar;J. Roy. Statist. Soc. B Methodol.,2009

5. Sparse modal additive model;Chen;IEEE Trans. Neural Netw. Learn. Syst.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3