A Spider Monkey Optimization Based on Beta-Hill Climbing Optimizer for Unmanned Combat Aerial Vehicle (UCAV)

Author:

Allouani Fouad1,Abboudi Abdelaziz2,Gao Xiao-Zhi3ORCID,Bououden Sofiane1ORCID,Boulkaibet Ilyes4,Khezami Nadhira4ORCID,Lajmi Fatma5ORCID

Affiliation:

1. Laboratory of SATIT, Department of Industrial Engineering, Abbes Laghrour University, Khenchela 40004, Algeria

2. Department of Mechanical Engineering, Abbes Laghrour University, Khenchela 40004, Algeria

3. School of Computing, University of Eastern Finland, 70210 Kuopio, Finland

4. College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait

5. ENISO Laboratory: Networked Objectives, Control, and Communication Systems, National Engineering School of Sousse, Sousse 4023, Tunisia

Abstract

Unmanned Combat Aerial Vehicle (UCAV) path planning is a challenging optimization problem that seeks the optimal or near-optimal flight path for military operations. The problem is further complicated by the need to operate in a complex battlefield environment with minimal military risk and fewer constraints. To address these challenges, highly sophisticated control methods are required, and Swarm Intelligence (SI) algorithms have proven to be one of the most effective approaches. In this context, a study has been conducted to improve the existing Spider Monkey Optimization (SMO) algorithm by integrating a new explorative local search algorithm called Beta-Hill Climbing Optimizer (BHC) into the three main phases of SMO. The result is a novel SMO variant called SMOBHC, which offers improved performance in terms of intensification, exploration, avoiding local minima, and convergence speed. Specifically, BHC is integrated into the main SMO algorithmic structure for three purposes: to improve the new Spider Monkey solution generated in the SMO Local Leader Phase (LLP), to enhance the new Spider Monkey solution produced in the SMO Global Leader Phase (GLP), and to update the positions of all Local Leader members of each local group under a specific condition in the SMO Local Leader Decision (LLD) phase. To demonstrate the effectiveness of the proposed algorithm, SMOBHC is applied to UCAV path planning in 2D space on three different complex battlefields with ten, thirty, and twenty randomly distributed threats under various conditions. Experimental results show that SMOBHC outperforms the original SMO algorithm and a large set of twenty-six powerful and recent evolutionary algorithms. The proposed method shows better results in terms of the best, worst, mean, and standard deviation outcomes obtained from twenty independent runs on small-scale (D = 30), medium-scale (D = 60), and large-scale (D = 90) battlefields. Statistically, SMOBHC performs better on the three battlefields, except in the case of SMO, where there is no significant difference between them. Overall, the proposed SMO variant significantly improves the obstacle avoidance capability of the SMO algorithm and enhances the stability of the final results. The study provides an effective approach to UCAV path planning that can be useful in military operations with complex battlefield environments.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3