An Efficient Computational Approach for Inverse Kinematics Analysis of the UR10 Robot with SQP and BP-SQP Algorithms

Author:

Huang Yizhe123,Liu Jiaen1,Zhang Xuwei1,Wang Jun1ORCID,Li Xiao1ORCID,Tu Xikai1,Chen Shuisheng1,Wang Chenlin2ORCID,Huang Qibai2

Affiliation:

1. School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China

2. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

3. Dongfeng Liuzhou Motor Co., Ltd., Liuzhou 545005, China

Abstract

Two algorithms that are distinct from the closed algorithm are proposed to create the inverse kinematics model of the UR10 robot: the Sequential Quadratic Programming (SQP) algorithm and the Back Propagation-Sequential Quadratic Programming (BP-SQP) algorithm. The SQP algorithm is an iterative algorithm in which the fundamental tenet is that the joint’s total rotation radian should be at a minimum when the industrial robot reaches the target attitude. With this tenet, the SQP algorithm establishes the inverse kinematics model of the robot. Since the SQP algorithm is overly reliant on the initial values, deviations occur easily and the solution speed, and the accuracy of the algorithm is undermined. To assuage this disadvantage of the SQP algorithm, a BP-SQP algorithm incorporating a neural network is introduced to optimize the initial values. The results show that the SQP algorithm is an iterative algorithm that relies excessively on the initial values and has a narrow range of applications. The BP-SQP algorithm eliminates the limitations of the SQP algorithm, and the time complexity of the BP-SQP algorithm is greatly reduced. Subsequently, the effectiveness of the SQP algorithm and the BP-SQP algorithm is verified. The results show that the SQP and BP-SQP algorithms can significantly reduce the operation time compared with the closed algorithm, and the BP-SQP algorithm is faster but requires a certain number of samples as a prerequisite.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3