The Material Matters: Sorption/Desorption Study of Selected Estrogens on Common Tubing or Sampling Materials Used in Water Sampling, Handling, Analysis or Treatment Technologies

Author:

Odehnalová Klára1ORCID,Přibilová Petra1,Zezulka Štěpán1,Maršálek Blahoslav1ORCID

Affiliation:

1. Institute of Botany, Czech Academy of Sciences, Lidická 25/27, 60200 Brno, Czech Republic

Abstract

Plastic/rubber materials used as fasteners in equipment for analyzing or removing organic pollutants in water treatment technologies form an essential part of the device. Micropollutants in water are typically present at very low concentrations (ng/L to µg/L). Therefore, when designing, for example, units for advanced oxidation processes (AOPs) or planning sample handling, it is necessary to assess whether the material is compatible with the usually hydrophobic nature of the pollutants. As a model example, the possible interactions of estrogens, namely, estrone (E1), 17β-estradiol (E2), estriol (E3) and 17α-ethinylestradiol (EE2) with six commonly used plastic and rubber materials were investigated at environmentally relevant concentrations (100–500 ng/L). In the first phase, we proved that polyvinyl chloride (PVC), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF) and ethylene propylene diene monomer (EPDM) materials adsorbed only negligible amounts of estrogens, while significant amounts of E1, E2 and EE2 were adsorbed onto Tygon S3™ material. Another unsuitable material was styrene butadiene rubber (SBR), sorbing a considerable quantity of estrone. A detailed test of EPDM at higher concentrations (300 and 500 ng/L) and prolonged soaking time showed significant sorption of EE2 after 12 h of soaking in both deionized and tap water matrices. Thus, EPDM, PTFE and PVDF are suitable materials for sample handling or producing devices for AOP treatment due to their chemical inertness and mechanical flexibility. The results suggest that plastic materials that come into contact with contaminated water must be carefully selected, especially when working at environmentally relevant concentrations.

Funder

Czech Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3