Affiliation:
1. Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
Abstract
Compressed Sensing (CS) has been applied to electrocardiogram monitoring in wireless sensor networks, but existing sampling and compression circuits consume too much hardware. This paper proposes a low-power and small-area sampling and compression circuit with an Analog-to-Digital Converter (ADC) and a CS module. The ADC adopts split capacitors to reduce hardware consumption and uses a calibration technique to decrease offset voltage. The CS module uses an approximate addition calculation for compression and stores the compressed data in pulsed latches. The proposed addition completes the accurate calculation of the high part and the approximate calculation of the low part. In a 55 nm CMOS process, the ADC has an area of 0.011 mm2 and a power consumption of 0.214 μW at 10 kHz. Compared with traditional design, the area and power consumption of the proposed CS module are reduced by 19.5% and 31.7%, respectively. The sampling and compression circuit area is 0.325 mm2, and the power consumption is 2.951 μW at 1.2 V and 100 kHz. The compressed data are reconstructed with a percentage root mean square difference of less than 2%. The results indicate that the proposed circuit has performance advantages of hardware consumption and reconstruction quality.
Funder
Fundamental Research Funds for the Central Universities
Jiangsu Province Key Research and Development Program
Joint Project of Yangtze River Delta Community of Sci-Tech Innovation
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献