A General Framework for Reconstructing Full-Sample Continuous Vehicle Trajectories Using Roadside Sensing Data

Author:

Su Guimin123,Zeng Zimu1,Song Andi1,Zhao Cong1ORCID,Shen Feng2,Yuan Liangxiao2,Li Xinghua1

Affiliation:

1. Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China

2. Shanghai SEARI Intelligent System Co., Ltd., Shanghai 200063, China

3. Shanghai SH Intelligent Automotive Technology Co., Ltd., Shanghai 201805, China

Abstract

Vehicle trajectory data play an important role in autonomous driving and intelligent traffic control. With the widespread deployment of roadside sensors, such as cameras and millimeter-wave radar, it is possible to obtain full-sample vehicle trajectories for a whole area. This paper proposes a general framework for reconstructing continuous vehicle trajectories using roadside visual sensing data. The framework includes three modules: single-region vehicle trajectory extraction, multi-camera cross-region vehicle trajectory splicing, and missing trajectory completion. Firstly, the vehicle trajectory is extracted from each video by YOLOv5 and DeepSORT multi-target tracking algorithms. The vehicle trajectories in different videos are then spliced by the vehicle re-identification algorithm fused with lane features. Finally, the bidirectional long-short-time memory model (LSTM) based on graph attention is applied to complete the missing trajectory to obtain the continuous vehicle trajectory. Measured data from Donghai Bridge in Shanghai are applied to verify the feasibility and effectiveness of the framework. The results indicate that the vehicle re-identification algorithm with the lane features outperforms the vehicle re-identification algorithm that only considers the visual feature by 1.5% in mAP (mean average precision). Additionally, the bidirectional LSTM based on graph attention performs better than the model that does not consider the interaction between vehicles. The experiment demonstrates that our framework can effectively reconstruct the continuous vehicle trajectories on the expressway.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3