Analysis of Upstream Turbulence Impact on Wall Heat Transfer in an Acoustic Liner with Large-Eddy Simulations

Author:

Esnault Soizic1,Duchaine Florent1ORCID,Gicquel Laurent Y. M.1,Moreau Stéphane2ORCID

Affiliation:

1. Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, 42 Avenue Gaspard Coriolis, 31100 Toulouse, France

2. Department of Mechanical Engineering, Sherbrooke University, Sherbrooke, QC J1K 2R1, Canada

Abstract

Acoustic liners of aircraft fan ducts generate synthetic jets that interact with the boundary layer of the incident grazing flow. Such an interaction leads to complex wall heat transfer, which has been scarcely studied. The objective of the present work is to evaluate the flow dynamics and the heat transfer mechanisms that occur in acoustic liners by the use of Large-Eddy Simulations. To do so, two configurations, linked by a principle of similarity, are considered: a lab-scale one, for which dimensions have been multiplied by a factor of 6.25 to ease measurements, and an engine-scale configuration. The lab-scale configuration is used to validate the numerical methodology and, although some limitations are pointed out, the similitude is validated. As a main outcome of these detailed simulations, synthetic jets are found to completely drive the flow dynamics in the jet wakes. Upstream turbulence is also shown to impact the development of the first jet rows as well as the wall heat transfer between jets.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3