Dentin–Pulp Complex Response in Molars of Rats after Occlusal and Cervical Restorations with Conventional Glass Ionomer Cement and Nano-Hydroxyapatite Silica Glass Ionomer Cement

Author:

Niazi Fayez Hussain12ORCID,Luddin Norhayati1ORCID,Harun Masitah Hayati1,Hasan Arshad3ORCID,Kannan Thirumulu Ponnuraj1ORCID,Mohamad Suharni1,Mahmood Amer4ORCID

Affiliation:

1. Department of Restorative Dentistry, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia

2. Department of Restorative and Prosthetic Dentistry, College of Dentistry, Dar Al Uloom University, Riyadh 13314, Saudi Arabia

3. Department of Operative Dentistry, Dow Dental College, Dow University of Health Sciences, Karachi 74200, Pakistan

4. Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11421, Saudi Arabia

Abstract

The purpose of this in vivo study was to evaluate and compare the dentin–pulp complex response following occlusal and cervical restorations in rat molars restored with nano-hydroxyapatite silica glass ionomer cement (nano-HA-SiO2-GIC) and conventional glass ionomer cement (c-GIC). In total, 64 maxillary first molars of 32 male Wistar rats were restored using Fuji IX (c-GIC) and nano-HA-SiO2-GIC using a split-mouth design. Half of them were reserved for the occlusal type of restoration while the other half was for cervical restorations. After one week and one month, rats were euthanized and were stained with hematoxylin and eosin, Masson’s trichrome, and Brown and Brenn techniques for histological examination. Parameters such as disorganization of the pulp tissue, inflammatory cell infiltration, detection of bacteria, and tertiary dentin deposition were measured for each group. One week after sacrifice, the odontoblastic layer was disrupted, and moderate inflammation in the pulp area close to the cut dentin was observed in both types of restorations. Nano-HA-SiO2-GIC showed significantly superior properties when assessed based on tertiary dentin formation as compared to c-GIC. One month after sacrifice, there was no evidence of disruptions of the odontoblast layer, which exhibited a normal palisade appearance in both groups. In terms of inflammation, the pulp tissue recovered in almost all cases except one of c-GIC, but a few cases of the nano-HA-SiO2-GIC group still displayed mild-to-moderate inflammatory reactions, especially of the occlusal type. Both c-GIC and nano-HA-SiO2-GIC exhibited favorable responses in terms of biocompatibility. Nano-HA-SiO2-GIC exerted more inflammation but encouraged better tertiary dentin formation compared to c-GIC.

Funder

Deanship of graduate studies and scientific research at Dar Al Uloom University, Riyadh, KSA, and by the Research University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The road map to proper dental pulp experiments in animal models;International Dental Journal of Student's Research;2024-01-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3