A Convolutional Autoencoder Approach for Boosting the Specificity of Retinal Blood Vessels Segmentation
-
Published:2023-03-03
Issue:5
Volume:13
Page:3255
-
ISSN:2076-3417
-
Container-title:Applied Sciences
-
language:en
-
Short-container-title:Applied Sciences
Author:
Nikoloulopoulou Natalia1, Perikos Isidoros12ORCID, Daramouskas Ioannis12, Makris Christos1ORCID, Treigys Povilas3ORCID, Hatzilygeroudis Ioannis1ORCID
Affiliation:
1. Computer Engineering and Informatics Department, University of Patras, 26504 Patras, Greece 2. Computer Technology Institute and Press “Diophantus”, 26504 Patras, Greece 3. Institute of Data Science and Digital Technologies, Vilnius University, 01513 Vilnius, Lithuania
Abstract
Automated retina vessel segmentation of the human eye plays a vital role as it can significantly assist ophthalmologists in identifying many eye diseases, such as diabetes, stroke, arteriosclerosis, cardiovascular disease, and many other human illnesses. The fast, automatic and accurate retina vessel segmentation of the eyes is very desirable. This paper introduces a novel fully convolutional autoencoder for the retina vessel segmentation task. The proposed model consists of eight layers, each consisting of convolutional2D layers, MaxPooling layers, Batch Normalisation layers and more. Our model has been trained and evaluated on DRIVE and STARE datasets with 35 min of training time. The performance of the autoencoder model we introduce is assessed on two public datasets, the DRIVE and the STARE and achieved quite competitive results compared to the state-of-the-art methods in the literature. In particular, our model reached an accuracy of 95.73, an AUC_ROC of 97.49 on the DRIVE dataset, and an accuracy of 96.92 and an AUC ROC of 97.57 on the STARE dataset. Furthermore, our model has demonstrated the highest specificity among the methods in the literature, reporting a specificity of 98.57 on the DRIVE and 98.7 on the STARE dataset, respectively. The above statement can be noticed in the final blood vessel segmentation images produced by our convolutional autoencoder method since the segmentations are more accurate, sharp and noiseless than the result images of other proposed methods.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference45 articles.
1. Han, Z., Yin, Y., Meng, X., Yang, G., and Yan, X. (2014, January 14–17). Blood vessel segmentation in pathological retinal image. Proceedings of the 2014 IEEE International Conference on Data Mining Workshop, IEEE, Shenzhen, China. 2. (2022, February 27). Cardiovascular Diseases (CVDs). World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). 3. (2022, February 02). Wikipedia, Arteriosclerosis. Available online: https://en.wikipedia.org/wiki/Arteriosclerosis. 4. Smart, T.J., Richards, C.J., Bhatnagar, R., Pavesio, C., Agrawal, R., and Jones, P.H. (2015, January 9–12). A study of red blood cell deformability in diabetic retinopathy using optical tweezers. Proceedings of the Optical Trapping and Optical Micromanipulation XII, SPIE, San Diego, CA, USA. 5. Laibacher, T., Weyde, T., and Jalali, S. (2018). M2U-Net: Effective and efficient retinal vessel segmentation for resource-constrained environments. arXiv.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|