Effect of External Aeration on Cr (VI) Reduction in the Leersia hexandra Swartz Constructed Wetland-Microbial Fuel Cell System

Author:

Shi Yucui1,Tang Gang1,You Shaohong123ORCID,Jiang Pingping4

Affiliation:

1. College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China

2. Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China

3. Technical Innovation Center of Mine Geological Environment Restoration Engineering in Southern Stony Hill Area, Nanning 530000, China

4. College of Earth Sciences, Guilin University of Technology, Guilin 541004, China

Abstract

Cr (VI) is hazardous to humans and our environment. Leersia hexandra Swartz (L. hexandra) is the first wet chromium hyperaccumulator found in China. This study constructed the L. hexandra constructed wetland-microbial fuel cell (CW-MFC) system to treat Cr (VI) wastewater. It also determined the effects of different dissolved oxygen (DO) concentrations on power generation, pollutant removal, and Cr (VI) reduction. Cathode aeration promoted the voltage output and pollutant removal of the L. hexandra CW-MFC when the DO concentration was 4.5 mg·L−1: the highest voltage was 520 mV, the chemical oxygen demand (COD) removal rate was 93.73%, and the Cr (VI) removal rate was 97.77%. Moreover, the increase in the DO concentration improved the absorption of heavy metal Cr by the substrate and L. hexandra, and promoted the transformation from Cr (VI) to Cr (III). Chromium mostly exists as a residue with low toxicity and low mobility in L. hexandra and the substrate. This proves that the increased DO concentration promotes the redox reaction in the system and plants, reducing Cr (VI) to Cr (III). At the same time, the key micro-organism Geobacter that enhances the performance of the system and Cr (VI) reduction was found. The research results can provide a reference for the subsequent CW-MFC treatment of actual Cr-containing wastewater.

Funder

Natural Science Foundation of China

Guangxi Natural Science Foundation Program

Guilin Science and Technology Development Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3