Interval Type-2 Fuzzy-Logic-Based Constant Switching Frequency Control of a Sliding-Mode-Controlled DC–DC Boost Converter

Author:

Balta Güven1ORCID,Altin Necmi2ORCID,Nasiri Adel3ORCID

Affiliation:

1. Electrical-Electronics Engineering Department, Faculty of Engineering and Architecture, Erzurum Technical University, Erzurum 25050, Turkey

2. Electrical-Electronics Engineering Department, Faculty of Technology, Gazi University, Ankara 06560, Turkey

3. Electrical Engineering Department, College of Engineering and Computing, University of South Carolina (USC), Columbia, SC 29208, USA

Abstract

The inherent unlimited high switching frequency of the sliding mode controller (SMC) is limited by practical constraints of the hysteresis modulation (HM) technique. The inductor current and output voltage of a converter can be regulated using a combination of HM-SMC. However, HM-SMC results in a variable switching frequency operation, which is not preferred due to Electromagnetic Interference (EMI) issues. In this paper, an interval fuzzy controller is designed and developed as a solution to enable HM-SMC. In addition, a robust sliding surface is proposed, which provides an improved dynamic response. The two proposed controllers’ compatibility with one another has been tested via experiments such as a step change in input voltage, load resistance variation, and finally, a step change in output voltage reference value. The test results validate that while the interval type-2 fuzzy maintains a constant switching frequency with acceptable dynamic responses, it successfully regulates the state variables of the system. A comparison of the performance of the proposed control method with existing techniques in the literature is presented.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Global fast terminal sliding mode control with fixed switching frequency for voltage control of DC–DC buck converters;ISA Transactions;2023-12

2. MPPT Controller For Grid Tied PV System Based On Improved Sepic Converter;2023 International Conference on Circuit Power and Computing Technologies (ICCPCT);2023-08-10

3. Application of the Relative Orbit in an On-Orbit Service Mission;Electronics;2023-07-11

4. An Improved Fast Terminal Sliding Mode Control for Step-Down Converter;2023 15th International Conference on Electronics, Computers and Artificial Intelligence (ECAI);2023-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3