Characteristics of Resonant Tunneling in Nanostructures with Spacer Layers

Author:

Grishakov Konstantin12ORCID,Katin Konstantin12ORCID,Maslov Mikhail12ORCID

Affiliation:

1. Department of Condensed Matter Physics, National Research Nuclear University “MEPhI”, Kashirskoe Sh. 31, 115409 Moscow, Russia

2. Laboratory of Computational Design of Nanostructures, Nanodevices and Nanotechnologies, Research Institute for the Development of Scientific and Educational Potential of Youth, Aviatorov Str. 14/55, 119620 Moscow, Russia

Abstract

The effect of spacer layers on electron transport through two-barrier nanostructures was studied using the numerical solution of the time-dependent Schrodinger–Poisson equations with exact discrete open boundary conditions. The formulation of the problem took into account both the active region consisting of a quantum well and barriers, as well as the presence of highly doped contact layers and spacer layers. The use of the time formulation of the problem avoids the divergence of the numerical solution, which is usually observed when solving a stationary system of the Schrodinger–Poisson equations at small sizes of spacer layers. It is shown that an increase in the thickness of the emitter spacer leads to a decrease in the peak current through the resonant tunneling nanostructures. This is due to the charge accumulation effects, which, in particular, lead to a change in the potential in an additional quantum well formed in the emitter spacer region when a constant electric field is applied. The valley current also decreases as the thickness of the emitter spacer increases. The peak current and valley current are weakly dependent on the thickness of the collector spacer. The collector spacer thickness has a strong effect on the applied peak and valley voltages. The above features are valid for all three different resonant tunneling nanostructures considered in this study. For the RTD structures based on Al0.3Ga0.7As/GaAs, the optimized peak current value Ipmax = 5.6 × 109 A/m2 and the corresponding applied voltage Vp = 0.44 V. For the RTD structures based on AlAs/In0.8Ga0.2As, Ipmax = 14.5 × 109 A/m2 (Vp = 0.54 V); for RTD structures based on AlAs/In0.53Ga0.47As, Ipmax = 45.5 × 109 A/m2 (Vp = 1.75 V).

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3