Hierarchical LSTM-Based Network Intrusion Detection System Using Hybrid Classification

Author:

Han Jonghoo1,Pak Wooguil1ORCID

Affiliation:

1. Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

Abstract

Most existing network intrusion detection systems (NIDSs) perform intrusion detection using only a partial packet data of fixed size, but they suffer to increase the detection rate. In this study, in order to find the cause of a limited detection rate, accurate intrusion detection performance was analyzed by adjusting the amount of information used as features according to the size of the packet and length of the session. The results indicate that the total packet data and all packets in the session should be used for the maximum detection rate. However, existing NIDS cannot be extended to use all packet data of each session because the model could be too large owing to the excessive number of features, hampering realistic training and classification speeds. Therefore, in this paper, we present a novel approach for the classifier of NIDSs. The proposed NIDS can effectively handle the entire packet information using the hierarchical long short-term memory and achieves higher detection accuracy than existing methods. Performance evaluation confirms that detection performance can be greatly improved compared to existing NIDSs that use only partial packet information. The proposed NIDS achieves a detection rate of 95.16% and 99.70% when the existing NIDS show the highest detection rate of 93.49% and 98.31% based on the F1-score using two datasets. The proposed method can improve the limitations of existing NIDS and safeguard the network from malicious users by utilizing information on the entire packet.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3