Wind Loading of Photovoltaic Panels Installed on Hip Roofs of Rectangular and L-Shaped Low-Rise Buildings

Author:

Uematsu Yasushi,Yambe Tetsuo,Yamamoto Atsushi

Abstract

Many residential houses in Japan have hip roofs with pitches ranging from 20° to 30°. Recently, roof-mounted photovoltaic (PV) panels have become popular all over the world for environmental conservation. The design of PV systems in Japan is usually based on the Japanese Industrial Standard (JIS) C 8955 (2017). However, the standard does not provide wind force coefficients for PV panels installed near roof edges (up to 0.3 m from the edge) because flow separation at the roof edges causes large up-lift forces on such panels. In this paper, we investigated the wind force coefficients for designing PV panels installed on hip roofs of rectangular and L-shaped low-rise buildings. The roof pitch was set to 25° as a typical value. Rectangular panels were installed almost over the whole roof, including the edge zones. Because the thickness of PV panels and the distance between PV panels and the roof are both as small as several centimeters, it is difficult to make wind tunnel models of PV systems with the same geometric scale as that for buildings. We focused on a numerical simulation using the unsteady Bernoulli equation to estimate the pressures in the space between PV panels and the roof. In the simulation, we used the time histories of wind pressure coefficients on the bare roof, which were measured in a turbulent boundary layer. We propose installing PV panels with small gaps between them along their short sides. The gaps may reduce the wind loads not only on the PV panels but also on the roofing due to pressure equalization. We discuss the optimum gap width from the viewpoint of wind load reduction.

Publisher

MDPI AG

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3