Synbiotic Compositions of Bacillus megaterium and Polyunsaturated Fatty Acid Salt Enable Self-Sufficient Production of Specialized Pro-Resolving Mediators

Author:

Speckmann Bodo,Kleinbölting Jessica,Börner Friedemann,Jordan Paul M.ORCID,Werz OliverORCID,Pelzer Stefan,tom Dieck Heike,Wagner Tanja,Schön ChristianeORCID

Abstract

Specialized pro-resolving mediators (SPM) have emerged as crucial lipid mediators that confer the inflammation-resolving effects of omega-3 polyunsaturated fatty acids (n-3 PUFA). Importantly, SPM biosynthesis is dysfunctional in various conditions, which may explain the inconclusive efficacy data from n-3 PUFA interventions. To overcome the limitations of conventional n-3 PUFA supplementation strategies, we devised a composition enabling the self-sufficient production of SPM in vivo. Bacillus megaterium strains were fed highly bioavailable n-3 PUFA, followed by metabololipidomics analysis and bioinformatic assessment of the microbial genomes. All 48 tested Bacillus megaterium strains fed with the n-3 PUFA formulation produced a broad range of SPM and precursors thereof in a strain-specific manner, which may be explained by the CYP102A1 gene polymorphisms that we detected. A pilot study was performed to test if a synbiotic Bacillus megaterium/n-3 PUFA formulation increases SPM levels in vivo. Supplementation with a synbiotic capsule product led to significantly increased plasma levels of hydroxy-eicosapentaenoic acids (5-HEPE, 15-HEPE, 18-HEPE) and hydroxy-docosahexaenoic acids (4-HDHA, 7-HDHA) as well as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in healthy humans. To the best of our knowledge, we report here for the first time the development and in vivo application of a self-sufficient SPM-producing formulation. Further investigations are warranted to confirm and expand these findings, which may create a new class of n-3 PUFA interventions targeting inflammation resolution.

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3