Impact of Carbon Nanotubes and Graphene Oxide Nanomaterials on the Performance and Emissions of Diesel Engine Fueled with Diesel/Biodiesel Blend

Author:

Elkelawy Medhat1ORCID,El Shenawy El Shenawy A.1,Bastawissi Hagar Alm-Eldin1ORCID,Shams Mahmoud M.1ORCID

Affiliation:

1. Mechanical Power Engineering Department, Faculty of Engineering, Tanta University, Tanta 31733, Egypt

Abstract

Biodiesel produced from waste cooked oil (WCO) resources mixed with various nanoparticle additives and used as a fuel blend in diesel engine combustion is a hopeful research trend. All previous studies indicate that alternative fuels can provide better fuel properties with enhanced engine combustion, performance, and lower emissions than fossil diesel fuel. This study uses three fuel blends to compare the diesel engine’s combustion, performance, and emissions attributes at different loading values. Pure diesel fuel, B40, which is a blend of 40% WCO biodiesel and 60% diesel fuel, and mixtures of 40% WCO biodiesel, 56% diesel, and 4% toluene with carbon nanotubes (B40-CNTs) or graphene oxide nano-additive (B40-GO) at three concentrations of 50, 100, and 150 ppm were used. The results show enhancements in the diesel engine attribute values using B40-CNTs and B40-GO blends at different concentrations and engine load values better than the diesel engine attribute result values using B0 or B40 without nanoparticle additives. The combustion, performance, and emission attribute showed improvements using nanoparticles due to the increase in the evaporation rate, the oxygen rate, the surface area to volume ratio, and the thermal properties of the mixture. The highest in-cylinder peak pressure is recorded at 61 bar in B40 with 150 PPM of GO nanoparticles. The brake thermal efficiency records 43.6%, with the highest percentage found using B40-150GO at the maximum engine load value. The NOx emissions are dropped from 1240 PPM using pure diesel fuel to 884 PPM using B40 with 150 PPM of GO nanoparticles at the maximum engine load due to the lower combustion temperatures and duration.

Funder

Tanta University Research Fund

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3