Investigation of a Jet-Based Direct Mixing Process for Improved Structuring of Conductive Battery Hetero-Agglomerates

Author:

Witte Joscha1,Hua Zhi Cheng2,Kolck Victor3ORCID,Kruggel-Emden Harald3,Heinrich Stefan2ORCID,Schmidt Eberhard1ORCID

Affiliation:

1. Institute of Particle Technology, University of Wuppertal, Rainer-Gruenter-Straße 21, Geb. FF, 42119 Wuppertal, Germany

2. Institute of Solids Process Engineering and Particle Technology, Hamburg University of Technology (TUUH), Denickestraße 15 (K), 21073 Hamburg, Germany

3. Chair of Mechanical Process Engineering and Solids Processing, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany

Abstract

A jet-based direct mixing process is used to effectively mix heterogeneous materials. In this work, its application in the structuring, coating and agglomeration of cathode materials for all-solid-state battery (ASSB) production is investigated, with the aim of increasing the homogeneity and conductivity of the composites and ultimately improving battery performance. In this process, different particle systems consisting of lithium iron phosphate (LFP), carbon black (CB) and sodium chloride (NaCl) are dispersed in the gas phase and brought together in a mixing zone as particle-laden aerosol jets. The cathode material’s structure is studied through scanning electron microscopy combined with a focussed ion beam (SEM–FIB). Electrical conductivity measurements of the resulting composites assess the degree of mixing and the changes in tortuosity, while a laser light diffractor and a cascade impactor analyse the particle size distribution (PSD). The jet-based process effectively produces hetero-agglomerates with the possibility of creating different composite structures by adjusting the process parameters. The mass concentration influences not only the structure, but also the PSD in the flow and the electrical conductivity of the composite. The results serve as a basis for future experiments with solid electrolytes to comprehensively evaluate the process and the resulting battery materials.

Funder

Deutsche Forschungsgemeinschaft

University of Wuppertal

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3