Contribution of Microbial Residues Obtained from Lignin and Cellulose on Humus Formation

Author:

Wang ShuaiORCID,Wang Nan,Xu Junping,Zhang Xi,Dou SenORCID

Abstract

The contribution of microbial residues formed on lignin and cellulose to the formation of humus (HS) was investigated. The microbial residues formed by Aspergillus niger (A. niger) in the cultures of cellulose and lignin in a fluid medium were structurally characterized by elemental analysis, differential thermal analysis (DTA), FTIR spectroscopy and CP/MAS 13C NMR spectroscopy. Compared to cellulose itself, the microbial residue from cellulose contains more aromatic compounds and N-containing compounds and fewer carbohydrates and carboxylic compounds. A. niger improved the thermal stability and aromaticity of the cellulose. However, compared with that on lignin, more N-containing compounds, carbohydrates and carboxylic acid derivatives and less aromatic material were found in the microbial residue from lignin. Regardless of whether the carbon source was cellulose or lignin, A. niger utilized the N in the fluid medium to synthesize its own cells, and eventually, they could transfer the N into the microbial residue; in addition, the O-alkyl species dominated over the alkyl and aromatic compounds in the microbial residue. Although the molecular structures of the components of the microbial residue from lignin tended to be simpler, they were more alkylated, more hydrophobic and less aliphatic than those from cellulose. During culture with A. niger, the cellulose underwent degradation and then a polymerization, which led to an increased degree of condensation but a lower degree of oxidation, providing essential precursor substances for HSs formation. However, lignin underwent oxidative degradation. The microbial residue from lignin had a lower degree of condensation and a higher degree of oxidation.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3