Thermal Image Restoration Based on LWIR Sensor Statistics

Author:

Han JaedukORCID,Lee Haegeun,Kang Moon Gi

Abstract

An imaging system has natural statistics that reflect its intrinsic characteristics. For example, the gradient histogram of a visible light image generally obeys a heavy-tailed distribution, and its restoration considers natural statistics. Thermal imaging cameras detect infrared radiation, and their signal processors are specialized according to the optical and sensor systems. Thermal images, also known as long wavelength infrared (LWIR) images, suffer from distinct degradations of LWIR sensors and residual nonuniformity (RNU). However, despite the existence of various studies on the statistics of thermal images, thermal image processing has seldom attempted to incorporate natural statistics. In this study, natural statistics of thermal imaging sensors are derived, and an optimization method for restoring thermal images is proposed. To verify our hypothesis about the thermal images, high-frequency components of thermal images from various datasets are analyzed with various measures (correlation coefficient, histogram intersection, chi-squared test, Bhattacharyya distance, and Kullback–Leibler divergence), and generalized properties are derived. Furthermore, cost functions accommodating the validated natural statistics are designed and minimized by a pixel-wise optimization method. The proposed algorithm has a specialized structure for thermal images and outperforms the conventional methods. Several image quality assessments are employed for quantitatively demonstrating the performance of the proposed method. Experiments with synthesized images and real-world images are conducted, and the results are quantified by reference image assessments (peak signal-to-noise ratio and structural similarity index measure) and no-reference image assessments (Roughness (Ro) and Effective Roughness (ERo) indices).

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3