Numerical Prediction of Two-Phase Flow through a Tube Bundle Based on Reduced-Order Model and a Void Fraction Correlation

Author:

Dubot Claire,Allery Cyrille,Melot Vincent,Béghein Claudine,Oulghelou Mourad,Bonneau Clément

Abstract

Predicting the void fraction of a two-phase flow outside of tubes is essential to evaluate the thermohydraulic behaviour in steam generators. Indeed, it determines two-phase mixture properties and affects two-phase mixture velocity, which enable evaluating the pressure drop of the system. The two-fluid model for the numerical simulation of two-phase flows requires interaction laws between phases which are not known and/or reliable for a flow within a tube bundle. Therefore, the mixture model, for which it is easier to implement suitable correlations for tube bundles, is used. Indeed, by expressing the relative velocity as a function of slip, the void fraction model of Feenstra et al. and Hibiki et al. developed for upward cross-flow through horizontal tube bundles is introduced and compared. With the method suggested in this paper, the physical phenomena that occur in tube bundles are taken into consideration. Moreover, the tube bundle is modelled using a porous media approach where the Darcy–Forchheimer term is usually defined by correlations found in the literature. However, for some tube bundle geometries, these correlations are not available. The second goal of the paper is to quickly compute, in quasi-real-time, this term by a non-intrusive parametric reduced model based on Proper Orthogonal Decomposition. This method, named Bi-CITSGM (Bi-Calibrated Interpolation on the Tangent Subspace of the Grassmann Manifold), consists in interpolating the spatial and temporal bases by ITSGM (Interpolation on the Tangent Subspace of the Grassmann Manifold) in order to define the solution for a new parameter. The two developed methods are validated based on the experimental results obtained by Dowlati et al. for a two-phase cross-flow through a horizontal tube bundle.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference47 articles.

1. Thermal-Hydraulics in Recirculating Steam Generators—THIRST Code User’s Manual;Carver,1981

2. THYC, un code 3D de thermohydraulique pour les générateurs de vapeur, les échangeurs de chaleur et les condenseurs;Tincq;Rev. Générale De Therm.,1995

3. Average Volumetric Concentration in Two-Phase Flow Systems

4. Development of drift-flux model based on 8 × 8 BWR rod bundle geometry experiments under prototypic temperature and pressure conditions

5. Mechanistic Model for Predicting Two-Phase Void Fraction for Water in Vertical Tubes, Channels, and Rod Bundles;Lellouche,1982

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3