Design of Spectrum Processing Chiplet Based on FFT Algorithm

Author:

Meng Baoping1ORCID,Shan Guangbao1ORCID,Zheng Yanwen1

Affiliation:

1. School of Microelectronics, Xidian University, Xi’an 710071, China

Abstract

With the rapid development of electronic information and computer science, the fast Fourier transform (FFT) has played an increasingly important role in digital signal processing (DSP). This paper presented a spectrum processing chiplet design method to solve slow speed, low precision, and low resource utilization in spectrum processing of general-purpose spectrum chips and field programmable gate array (FPGA). To realize signal processing, the Radix-2 4096-point FFT algorithm with pipeline structure is used to process spectral signals extracted from the time domain. To reduce the harm caused by spectrum leakage, a windowing module is added to optimize the input data, and the clock gating unit (CGU) is used to perform low-power management on the entire clock reset. The result shows the chiplet takes 0.368 ms to complete a 4096-point frequency sweep under a clock frequency of 61.44 MHz. The chiplet significantly improves speed and accuracy in spectrum processing, which has great application potential in wireless communication.

Funder

Cooperation Program of XDU-Chongqing IC Innovation Research Institute

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference17 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Harmonic detection algorithm based on dual window full phase FFT dual spectral line in construction site power grid;2024 IEEE 6th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC);2024-05-24

2. A novel hybrid fast Fourier transform processor in 5G+ and bio medical applications;Microprocessors and Microsystems;2024-03

3. A FPGA implementation of Resonance Demodulation and its Spectrum Analysis;2023 2nd International Conference on Computing, Communication, Perception and Quantum Technology (CCPQT);2023-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3