Towards a Machine Learning-Based Digital Twin for Non-Invasive Human Bio-Signal Fusion

Author:

Al-Zyoud IzaldeinORCID,Laamarti FedwaORCID,Ma XiaocongORCID,Tobón DianaORCID,El Saddik AbdulmotalebORCID

Abstract

Human bio-signal fusion is considered a critical technological solution that needs to be advanced to enable modern and secure digital health and well-being applications in the metaverse. To support such efforts, we propose a new data-driven digital twin (DT) system to fuse three human physiological bio-signals: heart rate (HR), breathing rate (BR), and blood oxygen saturation level (SpO2). To accomplish this goal, we design a computer vision technology based on the non-invasive photoplethysmography (PPG) technique to extract raw time-series bio-signal data from facial video frames. Then, we implement machine learning (ML) technology to model and measure the bio-signals. We accurately demonstrate the digital twin capability in the modelling and measuring of three human bio-signals, HR, BR, and SpO2, and achieve strong performance compared to the ground-truth values. This research sets the foundation and the path forward for realizing a holistic human health and well-being DT model for real-world medical applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3