Study on Mechanical Properties of Fe-Ni-Based TiC Plasma Cladding Layer Modified by Composite Iron Powder

Author:

Du Kunda1,Xu Lipeng1ORCID,Wang Peizhuang1,Li Xiantao1,Wu Zenglei2,Li Xuexian2,Fan Weichao2

Affiliation:

1. School of Mechanical and Automotive Engineering, Liaocheng University, Liaocheng 252000, China

2. Shandong EAST Engineering Tools Limited Liability Company, Liaocheng 252000, China

Abstract

In order to improve the mechanical properties of the wear-resistant layer of the hob cutter ring in shield construction, the influence of different composite matrix powders on the comprehensive performance of the cladding layer was investigated. In this study, TiC-reinforced Fe-Ni-based cladding layers with different matrix compositions were prepared on a modified H13 steel base material using plasma cladding (PC) technology. The matrix powders included Ni-based alloy powder, iron powder Y, and iron powder R. The two iron powders were mixed in different proportions, and then an equal amount of Ni-based alloy powder and TiC ceramic particles were added to form five kinds of composite cladding layer alloy powders. The cladding layers of five different matrices were obtained by cladding. The microstructure and mechanical properties of the composite cladding layer were studied using a metallographic microscope (OM), an X-ray diffractometer (XRD), a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), an electronic universal testing machine, an image processing microhardness tester, and an abrasive belt friction and wear testing machine. The results showed that the cladding layers of different samples had good metallurgical bonding with the base material. And the microstructure gradually refined from the bottom of the cladding layer to the top of the cladding layer. The cladding layer phases were mainly composed of Fe, FeO, TiC, FeNi, and CrNi. With the increase in the iron powder R ratio, the aggregation of alloy elements gradually alleviated. The ratio of iron powder R was increased from 1/10 to 2/5, the longitudinal shear strength between the cladding layer and the matrix was increased from 318 Mpa to 333 Mpa, and the transverse shear strength was increased from 303 Mpa to 342 Mpa. The hardness of the modified wear-resistant layer was better than that of the cladding layer without iron powder R, but the hardness of the cladding layer gradually decreased. After the modification of iron powder R, the wear resistance of the cladding layer was improved to varying degrees. When Y:R was 9:1, its wear resistance was the best, and the change trend of the wear resistance was consistent with that of hardness. The wear forms of different samples were adhesive wear and abrasive wear. And the height difference of the wear surface gradually increased with the improvement in wear resistance.

Funder

Liaocheng University Latitudinal Projects

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3