Abstract
Flexible luminescent thin-film sensors have attracted widespread attention for their potential applications in biomedical detection, structural health detection, and smart wear. In this work, PVDF/ZnS:Mn flexible luminescent thin-film sensors were fabricated using electro-assisted 3D-printing techniques. The interaction and influence of PVDF thin film and ZnS:Mn were studied. The mechanism through which the PVDF matrix and ZnS:Mn particles affects the luminescence of the flexible thin-film sensor were investigated. The results demonstrate that the ZnS:Mn luminescent particles in PVDF thin films can promote the formation of the β-phase in the PVDF thin films. The mechano-luminesce spectra of the PVDF/ZnS:Mn composite thin film is consistent with the photoluminescence spectra, both of which exhibit yellow light with a wavelength of 580 nm. Mn entering the ZnS lattice increases the number of effective luminescent centres. Because of the double piezoelectric field, when the Mn content of ZnS:Mn is 4 at.% and PVDF films contain 3 wt.% ZnS:Mn particles, the PVDF/ZnS:Mn flexible thin-film sensors demonstrate excellent mechano-luminescence performance.
Funder
National Natural Science Foundation of China
Jiangxi Provincial Natural Science Foundation
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献