Friction and Wear Characteristics of Cr-CNTs Composite Coating End Faces of High-Temperature Mechanical Seals

Author:

Yang Haichao1,Li Shuangxi1,Ma Runmei1,Zhang Guoqing1,Liu An1

Affiliation:

1. College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

To improve the reliability of the end faces of high-temperature mechanical seals, a high-performance composite material that introduces carbon nanotubes (CNTs) into the laser-melted Cr coating is proposed. In this study, for high-temperature and high-speed mechanical seals under actual working conditions, friction and wear tests were conducted under different working conditions and using different end face materials. The high-temperature tribological properties of the Cr-CNTs coatings were analyzed, and the strengthening mechanism of the Cr-CNTs coatings on end faces was investigated. The results indicate that the wear resistance of the Cr-CNTs coating at high temperatures is first enhanced and then weakened with the increase in the CNTs content. The composite coating end face performance is optimal when the CNTs content is 10 wt%. The presence of CNTs between the end faces when grinding against the graphite ring favors the generation of a graphite film. The coefficient of friction of the Cr-CNTs coating is reduced by at least 12.46% compared to the Cr coating at a temperature of 483 K. This study provides reference examples for the application of carbon nanotubes in high-performance mechanical seals and new research ideas for improving the performance of mechanical seal end faces.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3