A Comprehensive Microstructural and Compositional Characterization of Allogenic and Xenogenic Bone: Application to Bone Grafts and Nanostructured Biomimetic Coatings

Author:

Graziani Gabriela,Govoni MarcoORCID,Vivarelli LeonardoORCID,Boi Marco,De Carolis Monica,Bianchi Michele,Sassoni EnricoORCID,Bignozzi Maria ChiaraORCID,Carnevale Gianluca,Marmi Federico,Maltarello Maria Cristina,Dallari DanteORCID

Abstract

Bone grafts and bone-based materials are widely used in orthopedic surgery. However, the selection of the bone type to be used is more focused on the biological properties of bone sources than physico-chemical ones. Moreover, although biogenic sources are increasingly used for deposition of biomimetic nanostructured coatings, the influence of specific precursors used on coating’s morphology and composition has not yet been explored. Therefore, in order to fill this gap, we provided a detailed characterization of the properties of the mineral phase of the most used bone sources for allografts, xenografts and coating deposition protocols, not currently available. To this aim, several bone apatite precursors are compared in terms of composition and morphology. Significant differences are assessed for the magnesium content between female and male human donors, and in terms of Ca/P ratio, magnesium content and carbonate substitution between human bone and different animal bone sources. Prospectively, based on these data, bone from different sources can be used to obtain bone grafts having slightly different properties, depending on the clinical need. Likewise, the suitability of coating-based biomimetic films for specific clinical musculoskeletal application may depend on the type of apatite precursor used, being differently able to tune surface morphology and nanostructuration, as shown in the proof of concepts of thin film manufacturing here presented.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3