Insightful Analysis of Phenomena Arising at the Metal|Polymer Interphase of Au-Ti Based Non-Enzymatic Glucose Sensitive Electrodes Covered by Nafion

Author:

Olejnik Adrian,Karczewski JakubORCID,Dołęga AnnaORCID,Siuzdak Katarzyna,Grochowska KatarzynaORCID

Abstract

This paper focuses on the examination of glucose oxidation processes at an electrode material composed of gold nanoparticles embedded in a titanium template. Three different conditions were investigated: the chloride content in the electrolyte, its ionic conductivity and the presence of a Nafion coating. The impact of the provided environment on the oxidation reaction was evaluated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Two models, namely: chemisorption and incipient hydrous oxide/adatom mediator (IHOAM), were applied to explain the complex voltammetric responses of the electrodes exposed to solutions of varied glucose concentrations. Three different phenomena were observed for the studied cases. The first is related to the transition between the dominant mechanism of glucose oxidation from the IHOAM model to the chemisorption model. This happens only in an electrolyte containing chlorides after exceeding a certain amount of glucose. The second effect exhibits a bottleneck nature resulting from the presence of Nafion on the electrode’s surface. In this case, mass transport through the semi-permeable polymer is hampered, due to the blocking of channels and physical internal cross-linking. This leads to a preconcentration of glucose inside the pores resulting in an increase in both the material sensitivity and the linear range of the calibration curve. Lastly, the third effect is manifested in a low concentration of the supporting electrolyte. It is based on the fact that mass transport of hydroxyl ions is governed not only by diffusion, but also by migration. These three effects have a tremendous impact on the glucose oxidation mechanism and reveal its very complex nature.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3